Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	(K _C =) [CH ₃ COOCH ₂ CH ₃] [H ₂ O] [CH ₃ COOH] [CH ₃ CH ₂ OH] ALLOW C ₂ H ₅ for CH ₃ CH ₂ State symbols are not required IGNORE any incorrect state symbols		1

Question	Acceptable A	nswers		Reject		Mark
Number						
1(a)(ii)						2
	Component	CH ₃ COOH(I)	C ₃ CH ₂ OH(I)	C ₃ COOCH ₂ CH ₃ (I)	₂ O(I)	
	Equilibrium amount / mol	(0.20)	0.10	0.20	0.35	
			BOTH 0.10 A	ND 0.20 (1)	0.35 (1)	
	0.10 and 0.2 Allow 0.1 ar 0.35 scores s	0 scores first ind 0.2				

Question	Acceptable Answers	Reject	Mark
Number			
1(a)(iii)	Units cancel	Concentrations are the	1
	OR	same	
	same number of moles /same number		
	of molecules on each side		
	OR		
	volume / V cancels		
	Ignore statements such as 'concentrations cancel' 'products and reactants cancel' 'same number of products as reactants'		

Question Number	Acceptable Answers	Reject	Mark
1(a)(iv)	$K_{\rm C} = \frac{(0.20) / V \times (0.35) / V}{(0.20) / V \times (0.10) / V}$ $= 3.5 / 3.50$ Correct answer with or without working scores 1 Ignore omission of V TE from values in (ii) table	$K_{C} = 4$	1
Ougation		Delegat	Most
Question Number	Acceptable Answers	Reject	Mark
1 (b)	 No effect on (position of) equilibrium (1) Rate (of attainment of equilibrium) is faster / equilibrium reached sooner (1) 		2

Question Number	Acceptable Answers	Reject	Mark
1(c) (i)	Bonds Broken C—O and O—H (1) Ignore where these bonds are broken in the acid and alcohol molecules. ALLOW C—OH for C—O		2
	CO-H for O—H Bonds Made C—O and O—H (1) Ignore where these bonds are made in the ester and water molecules.	Two O—H bonds formed in H ₂ O molecule	
	ALLOW C—OC for C—O H—OH for O—H Marks can be awarded by annotating displayed or structural formulae.	ONLY C—O bond broken and made scores (0) overall	
	Comment: Max 1 if any other bonds mentioned		

Question	Acceptable Answers	Reject	Mark
Number			
1(c)(ii)	(C-O and O-H) bond enthalpies differ in: different environments /different molecules /different compounds OR Bond enthalpies/bond energies are average values	'Heat loss'	1
	ALLOW Bonds being broken and made are attached to different atoms		

Question	Acceptable Answers	Reject	Mark
Number			
1 (d)(i)	$\Delta S_{\text{total}} = R \ln K$	log instead of In	1
	Allow ΔS_{total} is proportional to $\underline{\textbf{In}}K$ ALLOW K_c or K_p instead of K	ΔS_{total} is proportional to K / ΔS_{total} increases as K increases	

Question Number	Acceptable Answers	Reject	Mark
*1(d)(ii	mark: $(ΔH = 0 \text{ so})$ $ΔS_{\text{surroundings}} = 0$ OR $- \frac{ΔH}{T} = 0$ $IGNORE "ΔS_{\text{surroundings}} \text{ stays the same}".$ Second mark: $(so) ΔS_{\text{total}} \text{ does not change}$ OR $(so) ΔS_{\text{total}} = ΔS_{\text{system}}$ (1) Third mark: $(As ΔS_{\text{total}} = R \ln K) \text{ K does not alter}$ (1) ALLOW "it does not alter" to assume K does not alter. $ALLOW \text{ use of } K_c \text{ or } K_p \text{ instead of } K$ Each point is stand alone $IGNORE \text{ justifications in terms of Le Chatelier's Principle}$ NOTE: $Can \text{ award max (1) (i.e. the third scoring point) if the effect on K stated follows on CQ from a change to \Delta S_{\text{total}}$	If only mentions 'no effect on position of equilibrium' rather than the equilibrium constant	3

Question Number	Acceptable Answers	Reject	Mark
1(e)(i)	$CH_3COCI + CH_3CH_2OH \rightarrow$ $CH_3COOCH_2CH_3 + HCI$ Allow C_2H_5 for CH_3CH_2 Allow $CH_3CO_2CH_2CH_3$ for $CH_3COOCH_2CH_3$ IGNORE missing or incorrect state symbols	CH₃CCIO/ CH₂CH₃OH	1

Question Number	Acceptable Answers	Reject	Mark
1(e)(ii)	IGNORE Bond angles and length of the lines.		1

Question Number	Acceptable Answers	Reject	Mark
1(e)(iii)	H—C—C N—H H IGNORE Other products of the reaction if the above structure has been correctly drawn.	NH ₂ or CH ₃	1

Question	Acceptable Answers	Reject	Mark
Number			
1 (f)(i)	(CH ₃ COOCH ₂ CH ₃ + NaOH →) CH ₃ COONa + CH ₃ CH ₂ OH /C ₂ H ₅ OH	CH ₂ CH ₃ OH for ethanol	1
	Allow ionic representations of the sodium salt CH ₃ COO ⁻ Na ⁺ IGNORE missing or incorrect state symbols	CH2CH3OH IOI Ethanol	

Question Number	Acceptable Answers	Reject	Mark
1(f)(ii)	(Reaction with sodium hydroxide is) not an equilibrium / not reversible / goes to completion OR Reverse argument for acid hydrolysis		1

Question Number	Acceptable Answers	Reject	Mark
2 (a)	$K_{p} = \frac{p(H_{2})^{3} p(CO)}{p(CH_{4})p(H_{2}O)}$ (1)	[] $K_p = p(H_2)^3 + p(CO)$	1
	Brackets not required	$p(\overline{CH_4}) + p(H_2O)$	

Question Number	Acceptable Answers	Reject	Mark
2 (b)(i)	No effect (as K_p dependent only on temperature)		1
	(1)		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	(Since $K_p = \frac{x(H_2)^3 x(CO) \times P_T^4}{x(CH_4)x(H_2O)}$ to maintain K_p constant, mole fractions of numerator must decrease OR mole fractions of denominator must increase as $\times P_T^2$ overall) First mark: EITHER mole fractions/partial pressures of numerator decrease OR mole fractions/partial pressures of denominator increase Second mark: any mention of $\times P_T^2$ OR $\times P_T^4$ P_T^4		2
	(1)		
	ALLOW P for P_T		
	NOTE: If Le Chatelier quoted, statements such as:		
	"Equilibrium shifts to side of fewer moles (of gas molecules)/fewer (gas) molecules" max (1)		

Question Number	Acceptable Answers	Reject	Mark
2 (b)(iii)	Reaction takes place on surface of the catalyst (1) Active sites/(catalyst) surface is saturated with reactant molecules/reactants (at the pressure of the reaction) NOTE: an answer such as " depends on the availability of active sites"		2
	on catalyst surface" scores (2)		

Question Number	Acceptab	le Answer	S			Reject	Mark
2 (c)	$CO + H_2O \Rightarrow CO_2 + H_2$						3
	initial	1	1	0	0		
	eq'm	0.25	0.25	0.75	0.75		
	mol frac	0.125	0.125	0.375	0.375		
	pp	3.75	3.75	11.25	11.25		
	• eq	• eq'm moles all correct (1)					
	• mo	mole fractions all correct					
	• pa	partial pressures and answer = 9 with no					
	units (1)						
	NOTE: 3rd mark not awarded if any units shown						
		.25 ²			scores (3)		
	=	9					
	NOTE: Mark each step CQ. CHECK ALL WORKING						

Question Number	Acceptable Answers	Reject	Mark
2 (d)(i)	production (of hydrogen) forms CO ₂ OR production (of hydrogen) forms a Greenhouse gas OR production (of hydrogen) forms CO OR CO ₂ is a Greenhouse gas OR CO is a Greenhouse gas ALLOW production (of hydrogen) uses/requires energy ALLOW CO is toxic/poisonous	methane produced (0)	1

Question Number	Acceptable Answers	Reject	Mark
2 (d)(ii)	$2KHCO_3 \rightarrow K_2CO_3 + CO_2 + H_2O$		1
	ALLOW multiples		

Question Number	Acceptable Answers	Reject	Mark
2 (e)	products removed OR not a closed system OR balance between rate and yield OR balance between time and yield OR recycling of reactants OR more product in unit time (so process more economically viable) IGNORE any comments relating to cost	references to atom economy dangers of maintaining high pressures	1